Impaired airway clearance mechanisms

Impaired airway clearance is both an indication for and a consequence of an artificial airway. Frequently, translaryngeal intubation and/or tracheostomy are performed to clear secretions retained in the central airways. However, the presence of such an apparatus can also cause mucosal inflammation and significant mucus hypersecretion, predisposing to infection and encouraging atelectasis and hypoxia. When there is coexisting airflow obstruction or neuromuscular weakness, the work of breathing may be dramatically increased.

Moreover, the placement of an artificial airway bypasses the upper airway and the proximal trachea. As a consequence, certain physiological airway clearance functions are lost or impaired.

- Impairment of the mucociliary system: Bypassed airways eliminate the humidifying, warming and filtering function of the upper airway. Breathing dry air significantly reduces mucus transport velocity. It is not known whether the effect of decreased humidification on mucus mobility is a result of impairment of the mucociliary transport system, moisture-related changes in mucus viscosity and elasticity, or both. However, regardless of causes, increased viscosity and hyperproduction of mucus impairs ciliary function and exceeds the capacity for mucociliary transport.
• Impairment of the cough reflex: Artificial airway placement may compromise the cough reflex. Effective cough requires: inspirations sufficient to expand the airways and allow airflow to reach distal secretions; glottis closure and contraction of expiratory muscles to increase intrathoracic pressure; and sudden opening of the glottis to create a high air flow rate. Bypassing the glottis diminishes or eliminates its role in producing a forceful expulsion of air and secretions. Additionally, the reduced diameter and rigidity of an artificial airway increases airway resistance and contributes to restrictive lung disease, characterized by a reduced ability to exercise to maintain bellows function, lung volume, and aerobic capacity. Restrictive lung disease reduces the ability to generate airflow sufficient to produce an effective cough. When secretion viscosity rises and elasticity falls, or when airway resistance is increased, ineffective cough may actually cause retrograde movement of secretions to the lung periphery or aspiration to the contralateral lung.

• Structural damage to airway tissue: An artificial airway may result in both acute traumatic injuries to airway tissue and long-term physiological responses to a foreign irritant. The intubation procedure itself may precipitate laryngeal edema, inflammation, ulceration, or hematoma. High cuff pressures may induce mucosal ischemia and pressure necrosis of tracheal tissue. Risk factors associated with long-term or permanent tracheostomy include tracheal erosion, glottic and/or tracheal stenosis, tracheal dilation, and tracheomalacia. Artificial airway may also be associated with denuded epithelium and ciliary damage.

Infection risks associated with bypassed airways

In the United States, pneumonia, second only to urinary tract infections as a common nosocomial infection, is the leading cause of death from community-acquired infection in hospitals. Pulmonary infection is a common complication in patients treated with endotracheal intubation and mechanical ventilation. A recent international prevalence study involving more than 1,000 intensive care units indicated that ventilator-associated pneumonia (VAP) is responsible for approximately 90% of infections in patients receiving assisted ventilation. Although the incidence of opportunistic infection varies greatly according to a number of underlying and contributing factors, the average rate of infection is approximately 25%. The risk increases with the duration of invasive airway therapy. Although debate exists regarding the mortality attributable to VAP among other causes of death, a substantial proportion of deaths result from VAP. Best estimates suggest that the crude mortality rate of VAP is 50%, with attributable mortality accounting for about 30% of total mortality.

Inpatients with bypassed upper airways, the potential for infection is enhanced by a number of factors including:

• bypass of the filtering function of the upper airway;
• introduction of bacteria during aspiration;
• impairment of mucociliary transport;
• hypersecretion of airway mucus;
• introduction of bacteria during intubation or suctioning;
• contaminated tubing, ventilator circuits, etc.; and
• patterns of antibiotic use.

The presence of an artificial airway impairs normal airway protective reflexes. Endotracheal tubes prevent the aspiration of sizable particles, but they may permit pharyngeal secretions to enter the trachea via the interstices of the balloon cuff, resulting in tracheal colonization and increased risk of serious pulmonary infection.

Aspiration can have dire consequences, especially for debilitated patients with underlying pulmonary disease. Deleterious consequences include chemical pneumonitis, bacterial pneumonitis, mechanical obstruction, and transient hypoxia.

Most episodes of hospital-acquired pneumonia (which may be antibiotic resistant) are thought to derive from aspiration of pathogenic oropharyngeal bacteria into the distal bronchi. The premise that nosocomial pneumonia in intubated patients develops from aspiration of colonized oropharyngeal or tracheal secretions is supported by studies showing that upper airway colonization usually precedes such infection. The very high rate of endotracheal tube colonization may represent a persistent source of organisms causing pneumonia. In patients with impaired mucociliary clearance, secretions retained in the lower airways provide an ideal environment for colonizing organisms. Aspirated bacteria proliferate in the lower airways, stimulating a host inflammatory response. If the rate of bacterial proliferation exceeds the rate of host inflammatory clearance, the inflammatory response spreads to the contiguous bronchiolar wall, leading to bronchiolitis, and may proceed to involve the alveoli and other interstitial tissues, leading to bronchopneumonia. Patients who have impaired mechanical, humoral, or cellular lung defense mechanisms are especially vulnerable.
Aspiration of colonized gastric contents may also play a role in the etiology of pneumonia among patients with artificial airways. Although the role of gastric colonization and subsequent gastric aspiration as a risk factor for VAP remains controversial, most investigators agree that significant aspiration of contaminated gastric contents into the lower airway can lead to the development of VAP and may induce lung injury.41,42,43 Although gross aspiration of large volumes of gastric contents is uncommon with artificial airways, the presence of invasive tubing can impair swallowing and esophageal motility, increasing the risk of aspiration.44,45 Gastroesophageal aspiration may result in laryngitis, recurrent bronchitis, pneumonitis, and bronchiectasis. It may also lead to chemical pneumonia, increased secretion production, bronchospasm, and hypoxia.46

Pathogens may also be introduced directly during the intubation procedure during routine suctioning, or via contaminated tubing, ventilator circuits, etc.

Overzealous use of antibiotics, especially broad-spectrum agents, predisposes to the development of antibiotic-resistant infections.47

The pathogenesis of pneumonia associated with artificial airways and MV has been investigated extensively in the last decade.48,49 The roles of tracheal contamination from infected sinus and contaminated gastric secretions, bacterial adhesins and receptors, and other factors have received detailed attention.50,51,52 Despite numerous studies, debate continues concerning the pattern and sequence of endotracheal tube colonization in intubated and MV patients. However, regardless of the precise sequence of events, significant colonization typically involves the lower part of the respiratory tract.53

Indications for airway clearance therapy

Impaired mucociliary clearance is both an indication for and a consequence of the use of artificial airways. Artificial airways bypass important components of the normal airway clearance system and are irritants, which promote mucus hypersecretion and impair mucociliary clearance.

Poor secretion clearance disrupts the defense mechanisms of airway epithelium.

Retained airway secretions lead to:

- Airway obstruction, inhibiting O2/CO2 exchange
- Ineffective cough, resulting from mucus accumulation in the airways
- Accumulation of particulate matter, including pathogens

In individuals with bypassed upper airways, recurrent respiratory tract infections exacerbate lower respiratory tract secretion retention, frequently resulting in a vicious cycle of pneumonia, pulmonary atelectasis and respiratory failure.55 During such events, existing pulmonary deficits are worsened by bronchial mucus plugging and further weakening and fatigue of respiratory muscles. Such episodes initiate a downward spiral involving recurrent or refractory pneumonia, emergency hospitalizations and, eventually, fatal respiratory failure.

Prophylactic and therapeutic airway clearance is a very important component in optimizing outcomes for this patient population.

References

5. Annual costs of the hospital maintenance of VAs is estimated to range between $250,000-$550,000. Although estimates vary, for patients with adequate education, motivation, and family resources to manage MV care at home, equipment and supply costs can be reduced to about $20,000 yearly. Ibid, 294.
6. The largest part of home care costs for VAs is allocated for skilled care, accounting for between 60-70% of total expenses. When such services are required, cost estimates are much higher than cited above, but remain well below the cost of hospital-based MV maintenance. For example, in a study of VAs with amyotrophic lateral sclerosis (ALS), the mean yearly cost of home ventilation was $153,252. Moss AH, Casey P, Stocking...

For a detailed discussion of the physiological consequences of various MV modalities, see: Marini JJ. Indications and options in mechanical ventilation. *Eur Respir Mon* 1998; 8: 511-536.

Shekleton ME, op cit (n 1).

The placement of a tracheostomy to facilitate secretion clearance should be used only when other methods to maintain pulmonary hygiene have failed. In many cases, the use of an appropriate airway clearance modality and, if necessary, nasotracheal suctioning or artificial coughing may be sufficient. Ritz, R. Methods to avoid intubation. *Respir Care* 1999; 44(6): 686-699.

Ibid.

In one study concerning impaired mucociliary transport in intubated patients, such dysfunction was associated with a loss of cilia rather than to the development of ultrastructural abnormalities. Konrad F, Schiener R, Marx T, Georgeirr M. Ultrastructure and mucociliary transport of tracheal respiratory epithelium in intubated patients. *Intensive Care Med* 1995; 21:482-489.

Although cough function is usually impaired by the placement of an artificial airway, some individuals remain able to cough quite effectively. Sant’Ambrogio G, Matthew O. Laryngeal receptors and their reflex responses. *Clin Chest Med* 1986; 7:211-222.

Ibid.

Although the risk of nosocomial infection is highest during the first two weeks of MV therapy, duration of ventilation is a risk factor exponentially related to the acquisition of ventilator associated pneumonia (VAP). The crude rates of VAP range from 1-3% per day of intubation and mechanical ventilation. Torres A. op. cit (n.30).

Ibid.

Slutsky AS. Op cit (n.25).

In a recent study, investigators concluded that the stomach does not appear to be an important reservoir for gram-negative colonization in ventilator-dependent patients. Palmer LB, Donelan GF, Bellemore E, Greene W. Gastric flora in chronically mechanically ventilated patients. Palmer LB, Donelan GF, Bellemore E, Greene W. Gastric flora in chronically mechanically ventilated patients: relationship to upper and lower airway colonization. *Am J Respir Crit Care Med* 1995; 151: 1063-1067.

Staffer JL. Op cit (n.24).

For a discussion and review of literature concerning gastric colonization, see: Torres A. Op. cit (n.30).

Bartlett JG, Gorbach SL. The triple threat of aspiration pneumonia.
47 Kollef MH. Op cit (n. 41).
48 Estes, RJ. Op cit (n.40).
50 Kollef MH. Op cit (n.41).
52 Estes RJ. op. cite (n.40).